Fiegel, L. J., Mohanty, G. P. \& Healy, J. H. (1964). J. Chem. Engng Data 9, 365.
Gatehouse, B. M. \& Wadsley, A. D. (1964). Acta Cryst. 17, 1545.
Goldschmidt, H. J. (1960). Metallurgia, 62, 373.
Kovba, L. M. \& Trunov, V. K. (1962). Dokl. Akad. Nauk SSSR, 147, 622.
Magnéli, A. (1953). Acta Cryst. 6, 495.
Mohanty, G. P. \& Fiegel, L. J. (1964). Acta Cryst. 17, 454. Roth, R. S. \& Wadsley, A. D. (1965a). Acta Cryst. 18, 724.

Roth, R. S. \& Wadsley, A. D. (1965b). Acta Cryst. 19, 32.
Roth, R. S. \& Wadsley, A. D. (1965c). Acta Cryst. 19, 38.
Roth, R. S. \& Wadsley, A. D. (1965d). Acta Cryst. 19, 42.
Roth, R. S., Wadsley, A. D. \& Andersson, S. (1965). Acta Cryst. 18, 643.
Wadsley, A. D. (1961a). Acta Cryst. 14, 660.
Wadsley, A. D. (1961b). Acta Cryst. 14, 664.
Wadsley, A. D. (1964). In Non-stoichiometric compounds. Ed. L. Mandelcorn. pp. 98-209. New York: Academic Press.

Multiple Phase Formation in the Binary System $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{WO}_{3}$ II. The Structure of the Monoclinic Phases $\mathbf{W N b}_{12} \mathrm{O}_{33}$ and $\mathrm{W}_{5} \mathbf{N b}_{16} \mathrm{O}_{55}$

By R.S. Roth* and A.D.Wadsley
Division of Mineral Chemistry, C.S.I.R.O., Melbourne, Australia
(Received 26 October 1964)

The unit-cell dimensions of $\mathrm{WNb}_{12} \mathrm{O}_{33}$ are $a=22.37, b=3.825, c=17.87 \AA, \beta=123.6^{\circ}$, space group $C 2$. The structure consists of ReO_{3}-type blocks of $\mathrm{Nb}-\mathrm{O}$ octahedra three wide, four long, and infinite in the third direction, which are joined by sharing edges, and with tetrahedrally coordinated W atoms ordered at the junctions of every four blocks. $\mathrm{W}_{5} \mathrm{Nb}_{16} \mathrm{O}_{55}$ has the dimensions $a=29 \cdot 79, b=3 \cdot 820$, $c=23.08 \AA, \beta=126.5^{\circ}$ and the space group $C 2$. It also contains octahedral blocks, but of a different size, four wide, five long and infinite along the third direction. These blocks are grouped as in $\mathrm{WNb}_{12} \mathrm{O}_{33}$, with W occupying similar tetrahedral positions. The structures of both were deduced by trial-and-error, and refined by two-dimensional Fourier methods.

Introduction

The preparation and identification of five phases in part of the equilibrium system $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{WO}_{3}$ was reported in the preceding paper (Roth \& Wadsley, 1965b). Although the ideal structures of four of them in principle can be solved by geometrical reasoning, it is particularly important to examine each one in some detail, since there are potentially a very large number of related structures in the same composition range which might instead be adopted (see part IV of the present series, Roth \& Wadsley, 1965d).

The ideal structure of a compound of this type contains perfectly regular metal-oxygen octahedra joined up by edge- or corner-sharing without irregularities or distortions of any kind. Refinement by crystallographic techniques must provide the proof, and requires at least partial solutions to three problems posed by this simplification:
(a) The real positions of the atoms.
(b) The way oxygen atoms are coordinated to the metals.
(c) The distribution of Nb and W over the metal positions, and in particular whether tetrahedrally coordinated atoms are ordered.

[^0]All four compounds contain an axis of symmetry $3.82 \AA$ long corresponding to an octahedral body diagonal, and overlap is therefore limited to the oxygen atoms overlying the metal atoms with this particular coordination. The answers to these questions can be readily provided by two-dimensional methods of X-ray analysis, where the objectives are to establish these points beyond all reasonable doubt, rather than to attempt ultra-refinement which, for compounds of the present kind, poses many problems and may have little or no immediate significance.
The crystal structures of the two monoclinic compounds $\mathrm{WNb}_{12} \mathrm{O}_{33}$ and $\mathrm{W}_{5} \mathrm{Nb}_{16} \mathrm{O}_{55}$ are described in this paper, and the two tetragonal compounds in part III (Roth \& Wadsley, 1965c).

Experimental

Both compounds formed very small but well-shaped needles, with the crystallographic constants summarized in Table 1. The $h 0 l$ and $h 1 l$ intensity data for both were recorded with filtered copper radiation on multiple films by the integrating Weissenberg method, and measured with a standard scale. The crystals were about $0 \cdot 1 \mathrm{~mm}$ long, but only 5 microns in the average cross-section, so that absorption corrections could be neglected. Scattering curves for Nb^{5+} were taken from the data of Thomas \& Umeda (1957), W ${ }^{6+}$ from Inter-
national Tables for X-ray Crystallography (1962), both corrected for dispersion, and O^{2-} from Suzuki (1960). Calculations were made on the C.S.I.R.O. Elliott 803 computer with programs written in machine code, which were kindly made available by Dr P. J. Wheatley and Dr F. Stephens, Monsanto Research S.A., Zürich, Switzerland.

Table 1. Crystallographic data for $\mathrm{WNb}_{12} \mathrm{O}_{33}$ and $\mathrm{W}_{5} \mathrm{Nb}_{16} \mathrm{O}_{55}$
Symmetry: monoclinic

$\mathrm{WNb}_{12} \mathrm{O}_{33}$	$\mathrm{~W}_{5} \mathrm{Nb}_{16} \mathrm{O}_{55}$
$22.37 \AA$	$29.79 \AA$
3.825	3.820
17.87	23.08
123.6°	126.5°

Systematically absent reflexions: $h k l$ with $h+k \neq 2 n$
Possible space groups: $C 2$ (No. 5), $C m$ (No. 8), $C 2 / m$ (No. 12)

D_{m}	$4 \cdot 7 \pm 0 \cdot 1 \mathrm{~g} . \mathrm{cm}^{-3}$	$5 \cdot 0 \pm 0 \cdot 1 \mathrm{~g} . \mathrm{cm}^{-3}$
D_{x}	$4 \cdot 76 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$	$5 \cdot 17 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$
Z	2	2
μ	$543 \mathrm{~cm}^{-1}$	$623 \mathrm{~cm}^{-1}$

Method of structure determination

For each compound the reflexions of measurable intensity were only a fraction of the whole, but contained a strongly developed cubic sub-cell of side $3.8 \AA$ common also to many of the high temperature niobium oxide phases. Instead of attempting to find the positions of individual atoms ab initio, it is more practicable to assume that octahedra are joined by corners into finite sized blocks as in the ReO_{3}-type structure, to find how big the blocks are and how they unite to form the ideal arrangement. The orientation of the blocks is determined by the sub-cell, while the way they are joined must give a unit cell with the correct size and symmetry, containing the numbers of atoms which correspond as closely as possible to the experimentally determined composition and density (Gatehouse \& Wadsley, 1964).

The positions of the atoms in the real structure are considerably different from the ideal ones. A safe rule is to place them $3 \cdot 8 \AA$ apart within a block, and $3 \cdot 4 \AA$ at the junctions of two blocks where octahedra share edges. Most of the phase angles will then be determined, and the structure can be refined by Fourier methods with the two-dimensional space group alternatives $p 1$ or $p 2$, one of which must be eliminated. Because the axis of symmetry is short, the octahedral atoms must either lie within, or else be very close to two planes perpendicular to it at $y=0$ and $\frac{1}{2}$. Since each compound has a considerable number of atoms in the asymmetric unit, it is a most difficult task to decide between the two possibilities by attempting to shift some or all of them by small amounts from the special positions along y. Formal solutions requiring complete three-dimensional data can undoubtedly be found by suitable refinement procedures, but it is debatable whether they have any real meaning (Cruick-
shank, Lynton \& Barclay, 1962), and in any case will have little relevance in this study. Consequently upper level data are used solely to confirm each structure in three dimensions, i.e. whether an atom is at $y=0, \frac{1}{4}$ or $\frac{1}{2}$.

The structure of $\mathrm{WNb}_{12} \mathrm{O}_{33}$

The sub-cell axes were oriented at angles of 68° and 158° to the positive direction of the a axis of the sidecentred unit cell. The hypothetical number $n=4$ of the series $B_{3 n_{+1}} \mathrm{O}_{8 n_{+1}}$, related in structure to $\mathrm{PNb}_{9} \mathrm{O}_{25}$, had been expected at the composition $\mathrm{WNb}_{12} \mathrm{O}_{33}\left(=B_{13} \mathrm{O}_{33}\right.$, Roth \& Wadsley, 1965b), and the predicted orientation of the sub-cell as well as the size and symmetry of the unit cell were exactly confirmed. The ideal structure most likely contained $3 \times 4 \times \infty$ blocks, not $3 \times 3 \times \infty$ as in $\mathrm{PNb}_{9} \mathrm{O}_{25}$ (Roth, Wadsley \& Andersson, 1965), with edges common to similar blocks on all four sides transposed $b / 2$ upwards, and with tetrahedrally coordinated metals at the junctions.

The atoms were moved from their ideal positions to those they were likely to adopt in the real structure, and refined by F_{o} Fourier projections on to (010) in the two-dimensional space group $p 2$, the symmetry present in the trial model. The best agreement between F_{o} and F_{c} was obtained by placing tungsten at the origin and the niobium atoms in the octahedral positions, in contrast to the titanoniobates $\mathrm{TiNb}_{2} \mathrm{O}_{7}$, $\mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathrm{O}_{29}$ (Wadsley, 1961a, 1961b) and $\mathrm{TiNb}_{24} \mathrm{O}_{62}$ (Roth \& Wadsley, 1965a) where the two metals Ti and Nb were disordered. Refinement continued with two oxygen-only syntheses (Fig. 1) and finally with two

Table 2. Fractional atomic parameters for $\mathrm{WNb}_{12} \mathrm{O}_{33}$

Space group C2				
	Point			
Atom	position	x	y	z
W	2(a)	0	$\frac{1}{4}$	0
Nb (1)	4(c)	$0 \cdot 3663$	0	0.0423
Nb (2)	4(c)	$0 \cdot 2475$	0	$0 \cdot 1358$
Nb (3)	4(c)	$0 \cdot 1282$	0	$0 \cdot 2298$
Nb (4)	4(c)	$0 \cdot 4165$	0	0.3793
Nb (5)	4(c)	0.2957	0	0.4715
Nb (6)	4(c)	0.4619	0	$0 \cdot 7122$
$\mathrm{O}(1)$	2(b)	0	$\frac{1}{2}$	$\frac{1}{2}$
$\mathrm{O}(2)$	4(c)	$0 \cdot 1573$	0	0.0147
$\mathrm{O}(3)$	4(c)	$0 \cdot 3051$	0	0.0836
$\mathrm{O}(4)$	4(c)	0.0324	0	0.0937
$\mathrm{O}(5)$	4(c)	0.4554	0	0.1583
O (6)	4(c)	$0 \cdot 1836$	0	$0 \cdot 1789$
$\mathrm{O}(7)$	4(c)	0.0563	0	$0 \cdot 2569$
$\mathrm{O}(8)$	4(c)	0.3321	0	$0 \cdot 2572$
$\mathrm{O}(9)$	4(c)	0.4720	0	0.3247
$\mathrm{O}(10)$	4(c)	$0 \cdot 2080$	0	$0 \cdot 3498$
$\mathrm{O}(11)$	4(c)	$0 \cdot 3572$	0	0.4294
$\mathrm{O}(12)$	4(c)	$0 \cdot 2384$	0	$0 \cdot 5188$
O(13)	4(c)	0.3789	0	$0 \cdot 5937$
$\mathrm{O}(14)$	4(c)	0.0835	0	0.6207
$\mathrm{O}(15)$	4(c)	0.4070	0	0.7570
$\mathrm{O}(16)$	4(c)	0.2936	0	0.9217
O(17)	4(c)	0.4320	0	0.9867

The average standard deviations for the niobium atoms are $\sigma(x)=0.0002, \quad \sigma(z)=0.0002$; for oxygen $\sigma(x)=0.0029, \quad \sigma(z)=0.0036$.
$F_{o}-F_{c}$ projections，the final factor for the $h 0 l$ terms being $13 \cdot 1 \%$ ，with an overall isotropic temperature factor $B=0.3 \AA^{-2}$ ．

The oxygen atoms in Fig． 1 are clearly resolved，al－ though $\mathrm{O}(2), \mathrm{O}(7), \mathrm{O}(12), \mathrm{O}(15)$ and $\mathrm{O}(16)$ overlying some of the metals are rather elongated．An attempt was made to determine whether half an oxygen atom
was present at both ends of each of these peaks，in effect introducing an anisotropic temperature factor． This raised the R index about 3% more than by as－ signing the atom positions to the peak centres，and was not considered any further．

Two sets of $h 1 l$ structure factors were then com－ puted，with all of the atoms except for tetrahedral

Table 3．Observed and calculated structure factors for $\mathrm{WNb}_{12} \mathrm{O}_{33}\left(\mathrm{X}_{10} 0^{-1}\right)$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline bx 1 \& \({ }^{5}\) \& \(\left|r_{0}\right|\) \& bx 1 \& \(F_{0}\) \& \(W_{0}\) \& b \(\times 1\) \& \(\mathrm{P}_{0}\) \& \(\left|r_{0}\right|\) \& \(\mathrm{b}_{\mathrm{k}} \mathbf{1}\) \& F。 \& 19. \& bk 1 \& F。 \& 191 \& blı 1 \& Fo \& 180 \\
\hline 002 \& 26 \& 30 \& 603 \& 41 \& 45 \& 12010 \& 19 \& 15 \& \(180 \overline{19}\) \& 30 \& 29 \& 317 \& \& \& \& \& \\
\hline 003 \& 25 \& 32 \& \(60 \frac{3}{4}\) \& 103 \& 166＊ \& 12011 \& 16 \& 13 \& \(180 \frac{1}{20}\) \& 48 \& 45 \& \(3 \mathrm{3} \frac{1}{8}\) \& 51
28 \& 32 \& 13
13
13 \& 23
127 \& 129 \\
\hline 004 \& 43 \& 49 \& \(60 \frac{6}{7}\) \& 13 \& 24 \& \(120 \frac{1}{1}\) \& 27 \& 21 \& \(180 \frac{11}{21}\) \& 60 \& 45 \& \(31 \frac{8}{2}\) \& 22 \& 28 \& \({ }_{13} 13 \frac{2}{9}\) \& 127
37 \& 125
44 \\
\hline 005 \& 15 \& 17 \& \(60 \frac{7}{7}\) \& 21 \& 27 \& \(120 \frac{3}{3}\) \& 26 \& 26 \& \(200 \frac{1}{2}\) \& 17 \& 16 \& \(31 \frac{10}{10}\) \& 28 \& 31 \& 13 ， 16 \& 27 \& \(\stackrel{44}{27}\) \\
\hline 006 \& 12 \& 14 \& \(60 \frac{8}{6}\) \& 42 \& 40 \& 1203 \& 21 \& 24 \& \(200 \frac{1}{2}\) \& 31 \& 29 \& 31 \& 22 \& 22 \& \(131 \frac{16}{17}\) \& 74 \& 64 \\
\hline 0
0 07 \& 19 \& 19
66 \& \(60 \frac{10}{10}\) \& 15 \& 18 \& \(120 \frac{4}{12}\) \& 57 \& 47 \& \(200 \frac{3}{2}\) \& 43 \& 35 \& 3116 \& 19 \& 24 \& \(131 \frac{7}{18}\) \& 26 \& 19 \\
\hline 008 \& 63 \& 66 \& \(60 \frac{11}{11}\) \& 36 \& 30 \& 1205 \& 58 \& 61 \& \(200 \frac{3}{2}\) \& 24 \& 22 \& 319 \& 38 \& 33 \& \& \& 29 \\
\hline 0012 \& 38 \& 31 \& \(60 \frac{12}{12}\) \& 83 \& 96 \& \(120 \frac{6}{7}\) \& 46 \& 52 \& 2005 \& 24 \& 24 \& 3
3 1 \& 56 \& 62 \& 1512 \& 41 \& 39 \\
\hline 0013 \& 44 \& 43 \& \(60 \frac{13}{13}\) \& 52 \& 46 \& 1207 \& 49 \& 49 \& 2006 \& 82 \& 82 \& 511 \& 46 \& 43 \& \(151 \frac{1}{2}\) \& 113 \& 135 \\
\hline \(\bigcirc 017\) \& 27 \& 20 \& \(60 \frac{17}{17}\) \& 19 \& 21 \& \(120 \frac{8}{12}\) \& 82 \& 101 \& 2007 \& 44 \& 40 \& 514 \& 20 \& 27 \& \(151 \frac{2}{3}\) \& 26 \& 13
34 \\
\hline 200 \& \({ }^{6}\) \& 12 \& \(60 \frac{11}{21}\) \& 10 \& 8 \& \(120 \frac{10}{10}\) \& 23 \& 20 \& \(200 \frac{8}{8}\) \& 28 \& 29 \& 5114
5 \& 122 \& 117 \& \(151 \frac{3}{11}\) \& 26 \& 34
43 \\
\hline 201 \& 12 \& 7 \& 80 \& 45 \& 41 \& \(120 \frac{11}{12}\) \& 24 \& 25 \& 2002 \& 34 \& 26 \& 516 \& 36 \& 35 \& \(151 \frac{1}{12}\) \& 19 \& \\
\hline 202 \& 45 \& 50 \& 801 \& 39 \& 40 \& \(120 \frac{12}{12}\) \& 30 \& 32 \& \(200 \frac{14}{14}\) \& 34 \& 31 \& 517 \& 34
24 \& 33 \& \(151 \frac{12}{13}\) \& 27 \& 29 \\
\hline 203 \& 109 \& \({ }^{175 *}\) \& 880 \& 44 \& 52 \& \(120 \frac{\sqrt{14}}{12}\) \& 19 \& 18 \& \(200 \frac{15}{15}\) \& 20 \& 21 \& 512 \& 47 \& 38 \& \(15, \frac{13}{14}\) \& 27
58 \& 45 \\
\hline 204
205
205 \& 43
32 \& 42
30 \& \(\begin{array}{llll}8 \& 0 \& 4 \\ 8 \& 0 \& 5\end{array}\) \& 23
21 \& 27
26 \& 120
120 \& 68 \& 31
62 \& \(200 \frac{76}{20}\) \& 19 \& 18 \& \({ }_{5}^{5} 1 \frac{2}{2}\) \& 28 \& 31 \& \(15, \frac{14}{15}\) \& 52 \& 34 \\
\hline 206 \& 23 \& 21 \& 806 \& 22 \& 23 \& \(120 \frac{17}{17}\) \& 60 \& 49 \& \(200 \frac{18}{19}\) \& 17 \& 57
14 \& \(\begin{array}{llll}5 \& 1 \& 3 \\ 5 \& 1\end{array}\) \& 97 \& 88 \& 15119 \& 34 \& 23 \\
\hline 207 \& 56 \& 57 \& 807 \& 27 \& 26 \& 1400 \& 18 \& 19 \& 2200 \& 14 \& 14 \& \({ }_{5}^{5} 5\) \& 31 \& 89 \& 1710
1711 \& 48
67 \& 57
69 \\
\hline 208 \& 22 \& 27 \& 808 \& 20 \& 24 \& 1401 \& 27 \& 29 \& 2201 \& 38 \& 23 \& \({ }_{5}^{5} 5\) \& 32 \& 44 \& 1711
1715 \& 67
21 \& 69 \\
\hline 209 \& 17 \& 20 \& 809 \& 28 \& 26 \& 1402 \& 27 \& 29 \& \(220 \frac{3}{4}\) \& 54 \& 60 \& \(51 \frac{6}{7}\) \& 32 \& 34 \& \(171 \frac{1}{1}\) \& 27 \& 30 \\
\hline \(\begin{array}{lll}2 \& 0 \& 10 \\ 2 \& 0 \& 11\end{array}\) \& 18 \& 17 \& \(\begin{array}{llll}8 \& 0 \& 10 \\ 8 \& 0 \& 11\end{array}\) \& 27 \& 26 \& 1405 \& 28 \& 28 \& \(220 \frac{3}{4}\) \& 26 \& 21 \& \(51 \frac{1}{12}\) \& 25 \& 29 \& \(171 \frac{1}{4}\) \& 19 \& 29 \\
\hline \(\begin{array}{llll}2 \& 0 \& 11 \\ 2 \& 0 \& 15 \\ 2\end{array}\) \& 57
44 \& 55
42
4 \& 880011 \& 70
29 \& 74
46 \& 14
14
14 07 \& 27
64 \& 29 \& 2205
2205 \& 19 \& 12
69 \& 5116 \& 88 \& 80 \& \(171 \frac{4}{11}\) \& 33 \& 26 \\
\hline 2016 \& 16 \& 19 \& \(80 \frac{1}{2}\) \& 34 \& 19 \& \(140 \frac{1}{1}\) \& 28 \& 25 \& \(220 \frac{15}{16}\) \& 78 \& 69 \& \(\begin{array}{lll}710 \\ 71 \& \\ 7\end{array}\) \& 42 \& 40 \& \(171 \frac{17}{17}\) \& 88 \& 68 \\
\hline \(20 \frac{1}{1}\) \& 30 \& 34 \& \(80 \frac{4}{4}\) \& 19 \& 23 \& \(140 \frac{1}{2}\) \& 91 \& 93 \& \(220 \frac{16}{17}\) \& 21 \& 22 \& \(\begin{array}{llll}713 \\ 7 \& 1\end{array}\) \& 39 \& 36
34 \& \(1717 \frac{16}{20}\) \& 43 \& 33 \\
\hline 203 \& 7 \& 12 \& 805 \& 37 \& 45 \& \(140 \frac{3}{3}\) \& 56 \& 60 \& \(220 \frac{18}{18}\) \& 16 \& 15 \& 717 \& 26 \& 44 \& 1712
1912 \& 88 \& 26 \\
\hline \(20 \frac{4}{5}\) \& 15 \& 23 \& \(80 \frac{8}{8}\) \& 19 \& 24 \& \(140 \frac{4}{5}\) \& 52 \& 49 \& 220 \& 30 \& 26 \& 718 \& 75 \& 63 \& 1913 \& 82 \& 86 \\
\hline 205 \& 35 \& 49 \& 802 \& 46 \& 54 \& \(140 \frac{5}{5}\) \& 74 \& 73 \& \(220 \frac{21}{21}\) \& 20 \& 18 \& 719 \& 39 \& 30 \& \& \& 41 \\
\hline \(20 \frac{6}{9}\) \& 29 \& 17 \& \(80 \frac{10}{10}\) \& 75 \& 73 \& \(140 \frac{6}{7}\) \& 23 \& 16 \& \(240 \frac{12}{12}\) \& 51 \& 37 \& 7110 \& 33 \& 35 \& 1919 \& 83 \& 69 \\
\hline \(20 \frac{8}{9}\) \& 19 \& \({ }^{6}\) \& \(80 \frac{11}{11}\) \& 15 \& 7 \& \(140 \frac{7}{7}\) \& 16 \& 19 \& \(240 \frac{13}{13}\) \& 68 \& 59 \& 7111 \& 32 \& 39 \& \(191 \frac{13}{13}\) \& 44 \& 39 \\
\hline \(20 \%\) \& \({ }_{73}\) \& 88 \& 80
80 \& 46
23 \& 49
23 \& \(14.140 \frac{8}{9}\) \& 23 \& 27
35 \& \(240 \frac{14}{24}\) \& 30 \& 25 \& 717 \& 71 \& 70 \& \(191 \frac{17}{17}\) \& 57 \& 59 \\
\hline \(20 \frac{11}{11}\) \& 21 \& 20 \& \(80 \frac{1}{21}\) \& 17 \& 14 \& 14.14 \& 18 \& 20 \& \(240 \frac{15}{24}\) \& 17 \& 13 \& \(71 \frac{2}{3}\) \& 31 \& 32 \& 191 \& 48 \& 37 \\
\hline \(20 \frac{12}{12}\) \& 18 \& 18 \& 1001 \& 76 \& 73 \& \(140 \frac{11}{12}\) \& 22 \& 24 \& \(240 \frac{17}{18}\) \& 18 \& 14 \& \(71 \frac{3}{4}\) \& 17 \& 26 \& \(191 \frac{19}{19}\) \& 22 \& 24 \\
\hline \(20 \frac{14}{20}\) \& 34 \& 37
80 \& \(10{ }^{1} 9\) \& 68 \& 71 \& \(1400 \frac{13}{13}\) \& \({ }^{26}\) \& 33 \& \(240 \frac{19}{19}\) \& 13 \& 10 \& 715 \& 27 \& 29 \& 2115 \& 88 \& 22
69 \\
\hline \(20 \frac{18}{19}\) \& 79 \& 80 \& 1003 \& 38 \& 32 \& \(140 \frac{14}{14}\) \& 64 \& 56 \& 260 矴 \& 13 \& 10 \& \(711{ }^{13}\) \& 123 \& 137 \& \(211 \frac{6}{7}\) \& 33 \& 27 \\
\hline 2019
400 \& 18 \& 15 \& 1004 \& 31 \& 25 \& 14020 \& 17 \& 10 \& 2609 \& 15 \& 15 \& 912 \& 104 \& 112 \& 211 \& 27 \& 25 \\
\hline 404 \& 33 \& 21 \& 10
10
10 05 \& 22 \& 36
13 \& 1600
1601 \& 34
63 \& 31
64 \& \({ }_{26} 260\) \& 82 \& 81
19 \& 9
9 16 \& 27 \& 33 \& \(211 \frac{14}{14}\) \& 42 \& 45 \\
\hline 405 \& 104 \& 120 \& 1007 \& 24 \& 21 \& 1604 \& 19 \& 22 \& \(260 \frac{12}{12}\) \& 15 \& 13 \& \({ }_{9} \mathrm{l}^{1} 1111\) \& 70 \& 68 \& \(21 . \frac{15}{21}\) \& 68 \& 71 \\
\hline 406 \& 98 \& 117 \& 1008 \& 20 \& 22 \& 1605 \& 31 \& 31 \& \(260 \frac{14}{14}\) \& 21 \& 26 \& \({ }^{9} 112\) \& 20 \& 13 \& \begin{tabular}{l}
21 \\
21 \\
\hline 1717
\end{tabular} \& 25 \& 31 \\
\hline 407 \& 39 \& 37 \& 10010 \& 31 \& 28 \& 1607 \& 14 \& 37 \& \(260 \frac{15}{15}\) \& 14 \& 11 \& \(91 \frac{1}{2}\) \& 50 \& 41 \& \(21, \frac{17}{18}\) \& 22 \& 25 \\
\hline 408 \& 24 \& 23 \& 10011 \& 23 \& 25 \& 1608 \& 28 \& 26 \& 260 厚 \& 44 \& 44 \& 915 \& 30 \& 32 \& \(21 ; \frac{19}{19}\) \& 20 \& 17 \\
\hline 4010 \& 43 \& 37 \& 10012 \& 31 \& 29 \& 1601 \& 27 \& 24 \& \(280 \frac{11}{11}\) \& 18 \& 22 \& 918 \& 20 \& 31 \& 231 \& 21 \& \\
\hline 4011 \& 20 \& 21 \& 10013 \& 34 \& 38 \& \(160 \frac{2}{2}\) \& 42 \& 40 \& \(280 \frac{15}{15}\) \& 17 \& 23 \& 919 \& 40 \& 39 \& 2318 \& 43 \& \\
\hline 4014 \& 54 \& 52 \& \(100 \frac{1}{}\) \& 17 \& 16 \& \(160 \frac{3}{3}\) \& 56 \& 45 \& 110 \& 48 \& 76 \& 9110 \& 105 \& 108 \& \(23 . \frac{1}{12}\) \& 62 \& 36 \\
\hline 4
4
4 015 \& 12 \& 21
21 \& 10
10 \(0 \frac{2}{3}\) \& 23
22 \& 24
10 \& \(1600 \frac{6}{16}\) \& 88 \& 24
82 \& \(\begin{array}{lll}1 \& 1 \\ 1 \& 1 \\ 1\end{array}\) \& 70 \& 52 \& \(91 \frac{11}{11}\) \& 65 \& 58 \& \(23 \cdot 1 \frac{12}{16}\) \& 39 \& 31 \\
\hline 401 \& 17 \& 20 \& \(100 \frac{3}{4}\) \& 13 \& 10
9 \& 1600 \& 81
27 \& 82 \& \(\begin{array}{llll}1 \& 1 \& 2 \\ 1 \& 1\end{array}\) \& 66
84 \& 53
79 \& \(91 \frac{15}{19}\) \& 28 \& 30 \& \& \& \\
\hline ：\(\hat{0}\) 즉 \& \(\cdots\) \& 37 \& 解 \(\hat{0} \frac{5}{5}\) \& 8 \& \({ }_{20}^{60}\) \& \& \& \& \& \& 19 \& 91 12 \& 46 \& 40 \& \& \& \\
\hline 407 \& 9 \& 98 \& 1006 \& 29 \& 28 \& \(160 \frac{14}{16}\) \& 24 \& 23 \& 116 \& 14 \& 26 \& 1111 \& 53 \& 42 \& \& \& \\
\hline \(40 \frac{8}{8}\) \& 18 \& 19 \& 100 \& 108 \& 122 \& 160 \& 28 \& 29 \& 117 \& 36 \& 42 \& 1112 \& 25 \& 32 \& \& \& \\
\hline 409 \& 20 \& 24 \& \(\begin{array}{ll}10 \& 0 \\ 10 \& 0 \\ 10 \& 0 \\ 10\end{array}\) \& 15
19 \& 13
17 \& \(1600 \frac{16}{17}\)
160 \& 20 \& 21
22 \& \(\begin{array}{llll}1 \& 1 \& 8 \\ 1 \& 1 \& 12\end{array}\) \& 23
82 \& 72 \& \(\begin{array}{llll}11 \& 1 \\ 11 \& 3 \\ 1\end{array}\) \& 26 \& 31 \& \& \& \\
\hline \(40 \frac{11}{11}\) \& 62 \& 58 \& \(100 \frac{11}{11}\) \& 67 \& 73 \& 160 \& 24
29 \& 28 \& 1112 \& 129 \& 91 \& 11
11
11
1 19 \& 61
25 \& \begin{tabular}{l}
58 \\
33 \\
\hline 1
\end{tabular} \& \& \& \\
\hline \(40 \frac{12}{12}\) \& 18 \& 19 \& 100 \& 18 \& 19 \& 160 21 \& 25 \& 23 \& \(11 \frac{1}{4}\) \& 19 \& 29 \& \(111 \frac{3}{3}\) \& 26 \& 31 \& \& \& \\
\hline \(40 \frac{14}{14}\) \& 20 \& 23 \& \(100 \frac{14}{14}\) \& 19 \& 23 \& 16022 \& 36 \& 26 \& 115 \& 37 \& 38 \& \(111 \frac{3}{5}\) \& 20 \& 29 \& \& \& \\
\hline \(40 \frac{15}{15}\) \& 77 \& 81 \& \(100 \frac{15}{15}\) \& 34 \& 35 \& 1800 \& 52 \& 44 \& 119 \& 110 \& 123 \& 1116 \& 39 \& 40 \& \& \& \\
\hline 4020 \& 12 \& 11 \& 100 \& 33 \& 26 \& \(180 \frac{4}{5}\) \& 56 \& 55 \& 312 \& 92 \& 90 \& \(111 \frac{7}{7}\) \& 95 \& 90 \& \& \& \\
\hline 601 \& 25 \& 32 \& 100 \& 57 \& 58 \& 1805 \& 19 \& 17 \& 313 \& 24 \& 27 \& 1118 \& 122 \& 129 \& \& \& \\
\hline 602 \& 17 \& 23 \& 10020 \& 23 \& 17 \& \(180 \frac{8}{2}\) \& 47 \& 36
55 \& \({ }^{3} 14\) \& 18 \& 25 \& \(111 \overline{2}\) \& 31 \& 35 \& \& \& \\
\hline 603 \& 13 \& 17 \& 12
1200
120 \& 23
17 \& 17
18 \& 1802 \& 51 \& 55
40 \& \begin{tabular}{lll}
3 \& 1 \& 5 \\
3 \& 1 \\
\hline
\end{tabular} \& 31 \& 34 \& \(111 \frac{12}{12}\) \& 31 \& 40 \& \& \& \\
\hline 604
608 \& 20 \& 82 \& 12
12
120 \& 17
18 \& 18
19 \& \(1800 \frac{10}{11}\) \& 39
27 \& 40
30 \& \(\begin{array}{lll}3 \& 1 \& 6 \\ 3 \& 1 \& 10\end{array}\) \& \({ }_{2}^{90}\) \& 94
29 \& \(111 \frac{16}{16}\) \& 52 \& 59 \& \& \& \\
\hline 609 \& 43 \& 43 \& 1204 \& 61 \& 54 \& \(180 \frac{12}{12}\) \& 34 \& 31 \& 3113 \& 33 \& 28 \& 1313 \& 24 \& 4 \& \& \& \\
\hline \(60 \%\) \& 20 \& 22 \& 1205 \& 34 \& 29 \& 180 \& 20 \& 19 \& \(\begin{array}{ll}3 \& 114 \\ \\ \& 1 \\ \\ \end{array}\) \& 59 \& 63 \& 1314

13 \& 34 \& 24 \& \& \&

\hline 6013 \& 25 \& 22 \& 1206 \& 20 \& 19 \& 180 \& 20 \& 23 \& ${ }_{3} 115$ \& 55 \& 48 \& 1315 \& 27 \& 25 \& \& \&

\hline 6014 \& 16 \& 13 \& 1207 \& 20 \& 17 \& $180 \frac{15}{15}$ \& 20 \& 21 \& 312 \& 78 \& 66 \& 1316 \& 42 \& 34 \& \& \&

\hline $60 \frac{1}{2}$ \& 29 \& 45 \& 1208 \& 23 \& 29 \& $180 \frac{17}{17}$ \& 33 \& 29 \& 315 \& 13 \& 27 \& 1317 \& 47 \& 55 \& \& \&

\hline $60 \frac{1}{2}$ \& 31 \& 42 \& 1209 \& 17 \& 14 \& 180 \& 26 \& 25 \& 316 \& 69 \& 71 \& 1318 \& 36 \& 39 \& \& \&

\hline
\end{tabular}

Table 4．Interatomic distances for the octahedral Nb atoms in $\mathrm{WNb}_{12} \mathrm{O}_{33}$

Metal	Bonded oxygen atoms＊					Distances（ \AA ）					O－O distances（ \AA ）			
						（Same order as in column 2）					Average	Max．	Min．	Average
Nb （1）	$2^{\prime}(2)$ ；	16，	17，	5,	3	2．09（2）；	$1 \cdot 85$ ，	2－18，	1．92，	1.88	2.00	$3 \cdot 31$	$2 \cdot 19$	2.81
Nb （2）	$16^{\prime}(2)$ ；	2,	3 ，	8 ，	6	2．12（2）；	1．98，	1．96，	1．94，	1.97	2.02	$3 \cdot 40$	$2 \cdot 19$	2.81
Nb （3）	15＇（2）；	4 ，	6,	10，	7	2．13（2）；	2．18，	1．90，	$1 \cdot 88$ ，	1.92	$2 \cdot 02$	$3 \cdot 41$	$2 \cdot 15$	$2 \cdot 88$
Nb （4）	14＇（2）；	8 ，	9,	1,	11	1．91（2）；	1．94，	1．96，	1．92，	1.97	1.94	$2 \cdot 83$	$2 \cdot 66$	2.74
Nb （5）	12＇（2）；	10，	11，	13，	12	2．10（2）；	1．97，	1．90，	1.93 ，	$1 \cdot 86$	1.98	$3 \cdot 36$	$2 \cdot 18$	2.72
Nb （6）	$7^{\prime}(2)$ ；	5,	15，	13，	9	2．09（2）；	2．01，	1－80，	1－89，	1.92	1.97	3.35	$2 \cdot 15$	2.76

＊Given by numbers only（Table 2，Fig．2）．The first，followed by（2）and a semicolon，are the two oxygen atoms lying over and under the metal．E．s．d＇s of metal－oxygen distances are $\pm 0.07 \AA$ ，for oxygen－oxygen $0.09 \AA$ ．
tungsten placed in the special positions $y=0$ or $y=\frac{1}{2}$ given by the idealized model. In the first set the centrosymmetric space group $C 2 / m$ was assumed, with the two tetrahedral W distributed over the $4(g)$ positions $\pm(0, y, 0)$ with $y=\frac{1}{4}$ while in the second set they were placed in $2(a)$ for $C 2,(0, y, 0)$ with $y=\frac{1}{4}$. The R index for the former was 17.0%, and for the latter $15 \cdot 7 \%$, favouring the ordered polar structure as in $\mathrm{Nb}_{2} \mathrm{O}_{5}$ (Gatehouse \& Wadsley, 1964) and other related niobates. Fractional atomic parameters are given in Table 2, F_{o} and F_{c} in Table 3, and octahedral and tetrahedral bond distances in Tables 4 and 5 . The positions of the atoms are illustrated in Fig. 2.

Table 5. Tetrahedral interatomic distances and angles

$\mathrm{WNb}_{12} \mathrm{O}_{33}$	
$\mathrm{~W}-\mathrm{O}(4)$	$1 \cdot 70 \pm 0.07 \AA$
$\mathrm{~W}-\mathrm{O}(17)$	$1 \cdot 70 \pm 0.07$
$\mathrm{O}(4)-\mathrm{O}\left(17^{\prime}\right)$	$2 \cdot 77 \pm 0 \cdot 09$
$\mathrm{O}(4)-\mathrm{O}(17)$	$2.75 \pm 0 \cdot 09$
$\mathrm{O}(4)-\mathrm{O}\left(4^{\prime}\right)$	$2 \cdot 83 \pm 0 \cdot 13$
$\mathrm{O}(17)-\mathrm{O}\left(17^{\prime}\right)$	$2 \cdot 81 \pm 0 \cdot 13$
$\mathrm{O}(4)-\mathrm{W}-\mathrm{O}\left(17^{\prime}\right)$	$108 \cdot 1^{\circ}$
$\mathrm{O}(4)-\mathrm{W}-\mathrm{O}(17)$	107.0
$\mathrm{O}(4)-\mathrm{W}-\mathrm{O}\left(4^{\prime}\right)$	111.7
$\mathrm{O}(17)-\mathrm{W}-\mathrm{O}\left(17^{\prime}\right)$	110.5

Fig. 1. $F_{o}-F_{\text {metai }}$ electron-density projection on to (010) for $\mathrm{WNb}_{12} \mathrm{O}_{33}$, zero contour omitted. The numbering of the oxygen atoms corresponds to Table 2. Crosses are the positions of the metals; some small shifts were still to be made.

Fig. 2. Atom positions in $\mathrm{WNb}_{12} \mathrm{O}_{33}$, small circles Nb , larger circles oxygen. The lighter ones are at $y=0$, the heavier at $y=\frac{1}{2}$. The tetrahedral W is hatched.

The structure of $\mathbf{W}_{5} \mathbf{N b}_{16} \mathbf{O}_{55}$

The orthogonal sub-cell in this compound was oriented at angles of 74° and 164° to the a axis, the unit cell again being centred on (001). Although the axial dimensions were considerably larger than those of $\mathrm{WNb}_{12} \mathrm{O}_{33}$, the two structures were undoubtedly related, but not by any of the relationships expressed in part I (Roth \& Wadsley, 1965b). The simplest guess was to increase the size of the blocks to $4 \times 5 \times \infty$, which then were packed together in exactly the same way as the smaller blocks of $\mathrm{WNb}_{12} \mathrm{O}_{33}$, with tetrahedral atoms once more at the junctions. The sub-cell orientation, the unit-cell size and the chemical formula of this ideal model agreed perfectly with the experimentally determined values.

The number of W atoms in the formula greatly exceeded the number of tetrahedra, and the initial structure factor calculations assumed that W and Nb were disordered over all metal sites. It soon became clear that the model would refine to R values below 25% only if some or all of the metals were ordered. There are ten non-equivalent octahedrally coordinated metal atoms occupying general positions in the asymmetric unit and only one tetrahedral metal present at the origin in projection on to (010). The first $F_{0}-F_{\text {metal }}$ synthesis showed negative regions around the octahedral positions and a large residual peak at the origin. If W is ordered in this latter position, then either the eight Nb and the remaining two W atoms have preferred octahedral sites of their own in a fully ordered structure, or they are disordered. Peak heights in F_{o} Fourier syntheses are not always able to resolve uncertainties of this kind when the number of observed data is only a fraction of the whole (Roth \& Wadsley, 1965d). However, by placing W at the origin and disordering Nb and the remaining W to give simulated atoms $(8 \mathrm{Nb}+2 \mathrm{~W}) / 10$, an $F_{o}-F_{\text {metal }}$ synthesis showed well-defined oxygen atoms (Fig. 3) with a good background in the neighbourhood of the metal positions. After two $\mathrm{F}_{o}-F_{c}$ projections R dropped to 12.3%. The shifts of all the atoms were then less than half the

Fig. 3. The oxygen atoms in $\mathrm{W}_{5} \mathrm{Nb}_{16} \mathrm{O}_{55}$, shown by an F_{0} $F_{\text {metal }}$ electron density projection on to (010), zero contour omitted. Crosses are the metal positions.

Table 6. Fractional atomic parameters for $\mathrm{W}_{5} \mathrm{Nb}_{16} \mathrm{O}_{55}$, Space group C2

Atom	Space group C2				Space roup C2				
						Point			
	position	x	y	z	Atom	position	x	y	z
W(1)	2(a)	0	$\frac{1}{4}$	0	$\mathrm{O}(12)$	4(c)	$0 \cdot 1591$	0	0.2892
$B(1)^{*}$	4(c)	0.3904	0	0.0152	$\mathrm{O}(13)$	4(c)	0.3725	0	$0 \cdot 3041$
$B(2)$	4(c)	0.2931	0	0.0732	O(14)	4(c)	0.2686	0	0.3505
$B(3)$	4(c)	$0 \cdot 1950$	0	$0 \cdot 1298$	$\mathrm{O}(15)$	4(c)	0.4840	0	0.3679
$B(4)$	4(c)	0.0959	0	0.1864	O(16)	4(c)	$0 \cdot 1695$	0	0.4114
$B(5)$	4(c)	0.4214	0	$0 \cdot 2747$	$\mathrm{O}(17)$	4(c)	$0 \cdot 3867$	0	0.4318
$B(6)$	4(c)	$0 \cdot 3250$	0	0.3311	$\mathrm{O}(18)$	4(c)	0.0481	0	0.4723
$B(7)$	4(c)	0.2256	0	$0 \cdot 3868$	O(19)	4(c)	$0 \cdot 2790$	0	0.4852
$B(8)$	4(c)	0.4519	0	0.5277	O(20)	4(c)	0.3965	0	$0 \cdot 5493$
$B(9)$	4(c)	0.3528	0	0.5855	$\mathrm{O}(21)$	4(c)	$0 \cdot 2976$	0	0.6049
$B(10)$	4(c)	0.4812	0	0.7839	$\mathrm{O}(22)$	4(c)	$0 \cdot 1750$	0	0.6689
O(1)	2(b)	0	$\frac{1}{2}$	${ }^{\frac{1}{2}}$	$\mathrm{O}(23)$	4(c)	0.4114	0	0.6845
$\mathrm{O}(2)$	4(c)	$0 \cdot 1253$	0	0.0200	$\mathrm{O}(24)$	4(c)	0.0786	0	0.7253
O(3)	4(c)	$0 \cdot 3422$	0	$0 \cdot 0403$	O(25)	4(c)	0.4298	0	0.8111
$\mathrm{O}(4)$	4(c)	0.0318	0	0.0792	O (26)	4(c)	$0 \cdot 3301$	0	0.9065
$\mathrm{O}(5)$	4(c)	$0 \cdot 2410$	0	0.0979	$\mathrm{O}(27)$	4(c)	$0 \cdot 2217$	0	0.9605
O(6)	4(c)	0.4639	0	$0 \cdot 1152$	$\mathrm{O}(28)$	4(c)	0.4383	0	0.9759
O(7)	4(c)	$0 \cdot 1420$	0	$0 \cdot 1508$	* B represents a 'hybrid' metal $\frac{1}{5}(\mathrm{~W}+4 \mathrm{Nb})$.				
$\mathrm{O}(8)$	4(c)	0.3557	0	$0 \cdot 1651$					
$\mathrm{O}(9)$	4(c)	0.0399	0	$0 \cdot 2035$	The average standard deviations for the metal atoms are				
O(10)	4(c)	0.2606	0	0.2281		0.0002,	$z)=0.00$		gen
O(11)	4(c)	0.4720	0	$0 \cdot 2452$		0.0018,	$z)=0.00$		

Table 6 (cont.)
Space roup C2

The average standard deviations for the metal atoms are $\sigma(x)=0.0002, \quad \sigma(z)=0.0003 ;$ for oxygen $\sigma(x)=0.0018, \quad \sigma(z)=0.0023$.

Table 7. Observed and calculated structure factors for $\mathrm{W}_{5} \mathrm{Nb}_{16} \mathrm{O}_{55}\left(\mathrm{X10}^{-1}\right)$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline b \(k 1\) \& Fo \& |F! \& b 61 \& Fo \& 19.1 \& tx 1 \& F。 \& LP! \& \(\mathrm{hk}_{61} \mathrm{~F}_{0}\) \& \({ }^{1+1}\) \& 4 k 1 \& \({ }_{0}\) \& \$! \& 4 k 1 \& \({ }_{0}\) \& \(15 \cdot 1\) \\
\hline \({ }_{0} 002\) \& 42
58 \& \& \& \& 200 \& 1204 \& \& \& \& \& \({ }^{28} 0 \overline{23}\) \& \& 197 \& \& \& \\
\hline 0
0 03 \& 58
45 \& 36
31
3 \& 60
60
60 \& \[
\begin{aligned}
\& 204 \\
\& 204 \\
\& 26
\end{aligned}
\] \& 200
29 \& 1204
1205
1206 \& 53
56 \& 42
50 \& \& \begin{tabular}{r}
33 \\
\hline 58 \\
132
\end{tabular} \& 2810
1111
1
1 \& 138
138
138 \& 81
81
81 \& 15 15 \& 80 \& 61
99 \\
\hline 005 \& 69 \& 60 \& \(60 \%\) \& 93 \& 93 \& 1207 \& 47 \& 34 \& 20, \& \({ }^{28}\) \& 112 \& \({ }_{111}\) \& 70 \& \begin{tabular}{l}
\(17 \%\) \\
17 \\
17 \\
17 \\
\hline 18
\end{tabular} \& 81
211 \& 257 \\
\hline - \& 37
29 \& \begin{tabular}{l}
33 \\
23 \\
\hline
\end{tabular} \& \({ }_{6}^{6} 0\) \& 71 \& 88 \& 1208
12089 \& 35
35 \& \begin{tabular}{l}
27 \\
31 \\
\hline 1
\end{tabular} \& \({ }_{20}^{20} 07{ }^{2} 84\) \& \({ }_{6}^{67}\) \& 113 \& 103 \& 76 \& 171 \& 101 \& 120 \\
\hline 008 \& 22 \& 19 \& \(60 \frac{19}{24}\) \& 190 \& 237 \& 120 \& 36 \& 32 \& \({ }_{20}^{20} 0{ }^{20} \frac{1}{2}^{81}{ }_{81}^{48}\) \& \({ }_{84}^{41}\) \& 114 \& 182 \& 140 \& 171 \& 98 \& \({ }^{83}\) \\
\hline 009 \& 24 \& 25 \& 800 \& 32 \& 29 \& 12011 \& 35 \& 31 \& \(200 \frac{2}{3} 149\) \& 163 \& 115 \& 70 \& 51 \& 1912 \& 211 \& 272 \\
\hline \(\bigcirc{ }^{\circ} \mathrm{O} 10\) \& \({ }_{28}^{103}\) \& 95 \& 8801 \& 26 \& 17 \& \(120 \frac{2}{2}\) \& 32 \& 15 \& \(200 \frac{10}{10} 30\) \& 26 \& 119 \& 48 \& 64 \& \({ }^{19} 1{ }^{1} 12\) \& 132 \& 97 \\
\hline (1) \& 28 \& 19 \& 802
803 \& 35 \& 27
30 \& \({ }_{12}^{12} 0\) \& 50 \& \({ }^{27}\) \& \(200 \frac{11}{11} 30\) \& 26 \& 1118 \& 53 \& -58 \& \({ }_{21}^{21} 12\) \& 127 \& 132 \\
\hline 0015 \& 133 \& 140 \& 804 \& 24 \& 34 \& \& 73 \& 69 \& \(200 \frac{12}{15} 32\) \& \({ }_{39}^{36}\) \& \(11 \frac{1}{1}\) \& 270 \& 156 \& 219 \& 52 \& 74 \\
\hline 0020 \& 97 \& \({ }^{103}\) \& 806 \& 27 \& 35 \& 120 \& 35 \& 38 \& \(200 \frac{16}{16} 3\) \& 27 \& 115 \& 36 \& 44 \& 21
21
21 \& 110 \& \({ }_{79}^{85}\) \\
\hline 202 \& 43 \& \begin{tabular}{l}
33 \\
41 \\
\hline
\end{tabular} \& 808 \& 31 \& \({ }_{34}^{30}\) \& \({ }_{12} 1208\) \& 202 \& 203 \& \({ }_{20}^{20} 0 \frac{17}{18} 48\) \& - \({ }^{35}\) \& 11. \& 38 \& \& 2314 \& 47 \& 60 \\
\hline 203 \& 134 \& 113 \& 8010 \& 67 \& 66 \& \(120 \frac{1}{4}\) \& 29 \& 29 \& 22018139 \& 166 \& \& \({ }_{221}^{149}\) \& +156 \& 2315 \& 139 \& 172 \\
\hline 204 \& 290 \& 338 \& 8013 \& 50 \& 55 \& 1120 \& 31 \& 34 \& 220694 \& 109 \& 314 \& 66 \& \(4{ }^{4}\) \& \& \(1{ }^{44}\) \& 141 \\
\hline 205
206 \& 83
61 \& \({ }_{54}^{68}\) \& 88
80
80
0 \& \({ }^{35}\) \& 233 \& 12
120
120 \& \({ }_{96}^{46}\) \& \& 22.483 \& \& 317 \& 39 \& 43 \& \({ }_{23}^{23}\) : \(\frac{15}{25}\) \& \& \\
\hline 207 \& 55 \& 39 \& 801 \& \& 46 \& 1401 \& 40 \& 25 \& \({ }_{22}^{22} 0{ }^{214} 2120\) \& 35
200 \& 318 \& 120 \& 43 \& \(251 \frac{11}{11}\) \& 155 \& 155 \\
\hline 209 \& 97 \& 90 \& \(80 \frac{2}{2}\) \& 54 \& 55 \& 1406 \& 168 \& 179 \& \& 61 \& 317 \& 47 \& \({ }_{53}\) \& \& 45 \& 53 \\
\hline 2010 \& 30 \& \({ }_{36}^{44}\) \& \(880 \frac{3}{4}\) \& 683 \& 近 \& 14
14
14 \({ }^{\circ} 70\) \& \({ }_{50}\) \& \({ }_{31}{ }^{2}\) \& \({ }_{22}^{22} 0\) \& \({ }_{27} 38\) \& \({ }^{3} 1712\) \& 289 \& 196 \& \(251 \frac{1}{26}\) \& 151 \& 170 \\
\hline 2014 \& 77 \& 76 \& \(80 \frac{1}{5}\) \& 278 \& 324 \& 1407 \& 26 \& 25 \& 2201961 \& 56 \& \& 252 \& 245 \& 2717 \& 148 \& 15 \\
\hline 2015 \& 35 \& \({ }_{27}^{31}\) \& 80 \& 30 \& \({ }^{12}\) \& \({ }^{14} 40{ }^{14}\) \& 25 \& 23 \& \({ }^{24} 0{ }^{2} 0^{3} 45\) \& 47 \& 512 \& 62 \& 66 \& \({ }_{27}^{271} 1 \frac{8}{17}\) \& 63 \& \({ }_{6}^{6}\) \\
\hline 2019 \& 155 \& 171 \& \(80 \frac{1}{2}\) \& 36 \& 34 \& 1404 \& 54 \& 41 \& 2405150 \& 149 \& 51 \({ }^{5} 18\) \& 111 \& 130 \& \(271 \frac{13}{22}\) \& 91 \& 100 \\
\hline 2020 \& \& 28 \& 80 \& \({ }^{78}\) \& \({ }^{68}\) \& 1405 \& 24 \& 32 \& 2405 \& 39 \& 519 \& 109 \& 75 \& 27
29
19 \& 87 \& \({ }_{87}^{88}\) \\
\hline \& 37
37 \& 43
42
4 \& \({ }_{8}^{8} 80\) \& 25
27 \& 31 \& 1408 \& 23
24 \& 25
23 \& \({ }_{24}^{24} 0 \frac{6}{10} 118\) \& \({ }_{97}^{44}\) \& 711 \& \({ }_{42}^{60}\) \& 45 \& 2914 \& 95 \& 102 \\
\hline \(20 \frac{4}{5}\) \& 19 \& 18 \& 80 \& 41 \& 36 \& \(140 \frac{8}{8}\) \& 24 \& 28 \& 24011132 \& 136 \& 716 \& 50 \& 60 \& 291 \({ }^{29}\) \& 5 \& \({ }_{6}^{65}\) \\
\hline \({ }_{2}^{2} 05\) \& 27 \& 27
6 \& \(880 \frac{15}{19}\) \& 105 \& \({ }^{113}\) \& 14. \& 152 \& \(\stackrel{183}{20}\) \& \({ }_{24}^{24} 0{ }^{24} \frac{12}{13}{ }_{59}^{68}\) \& 76
50 \& 7110 \& 61 \& 76 \& \(291 \frac{19}{19}\) \& 140 \& \({ }_{147}\) \\
\hline 20.71 \& 136 \& 145 \& 80 \& 175 \& 203 \& 1409 \& 160 \& 157 \& 2401460 \& 52 \& \(71 \frac{11}{3}\) \& \({ }_{43}\) \& 145 \& 29123 \& 52 \& 45 \\
\hline 20 \(20 \frac{12}{15}\) \& 47 \& \({ }_{31}^{68}\) \& 1000 \& \({ }_{68} 8\) \& 68
68 \& \({ }^{14} 400 \frac{19}{14}\) \& 35 \& 37 \& \begin{tabular}{l}
24015 \\
24085 \\
\hline 17
\end{tabular} \& \(\begin{array}{r}15 \\ 34 \\ \hline\end{array}\) \& 714 \& 159 \& 153 \& \& \& \\
\hline 2016 \& 98 \& 91 \& 1100 \& 79 \& \({ }_{70}\) \& 14000 \& 52 \& 45 \& 240 ¢18 36 \& 30 \& 715 \& 184 \& 169 \& \& \& \\
\hline 2017 \& 86 \& 77 \& 100 \& 84 \& 76 \& 1603 \& 33 \& 39 \& 2401936 \& 38 \& 716 \& 69 \& 68 \& \& \& \\
\hline 403 \& 17 \& 13 \& 100 \& 40 \& 39 \& 1604 \& 34 \& 43 \& 240 21 35 \& 51 \& \(71 \overline{7}\) \& 38 \& 49 \& \& \& \\
\hline 406 \& 87 \& 89 \& 1080 \& 42 \& \({ }_{38}^{38}\) \& 16089 \& \({ }_{60}\) \& 67 \& \(24020{ }^{24}\) \& 42 \& \(71 \frac{8}{8}\) \& 40 \& 44 \& \& \& \\
\hline 407 \& 241 \& 220 \& 1008 \& 33 \& 32 \& 160 \& 170 \& 191 \& 240839 \& 52 \& 7120 \& 55 \& \({ }_{51}\) \& \& \& \\
\hline \begin{tabular}{l}
4 \\
4 \\
408 \\
\hline 808
\end{tabular} \& \({ }_{68}^{233}\) \& \begin{tabular}{c}
235 \\
58 \\
\hline
\end{tabular} \& 1009
100910 \& 48
50 \& \begin{tabular}{l}
38 \\
38 \\
\hline
\end{tabular} \& 16016 \& \({ }_{40}{ }^{58}\) \& \({ }_{3}^{54}\) \& \(\begin{array}{ll}24 \& 0 \\ 26 \& 0 \\ 29 \& 39\end{array}\) \& 76
52 \& \(71 \frac{23}{24}\) \& 75 \& \({ }^{76}\) \& \& \& \\
\hline 4010 \& \({ }_{4}^{42}\) \& 4 \& 10011 \& 36 \& 35 \& 1605 \& 27 \& \({ }_{23}\) \& \(260 \frac{3}{2} 61\) \& 72 \& 910 \& 79 \& 42 \& \& \& \\
\hline 4
4
4
4 011 \& \({ }_{60}\) \& 27
4
4 \& 10
10
10
0 14 \& \({ }_{4}^{82}\) \& 87
37 \& 1605
1605 \& 127
143 \& 116
122 \& \({ }_{26} 260{ }^{\circ}{ }^{62}\) \& 57 \& 914 \& 69 \& 78 \& \& \& \\
\hline 4014 \& 35 \& 37 \& 10016 \& 40 \& 49 \& \(160 \frac{6}{7}\) \& 96 \& 91 \& \(260 \frac{1}{8} 11\) \& 81 \& ¢ 9115 \& 120 \& 154
66 \& \& \& \\
\hline 4018 \& 45 \& 56 \& 10017 \& 65 \& 76 \& 1608 \& 77 \& \& \(260 \frac{20}{}\) \& 50 \& 911 \& \& 134 \& \& \& \\
\hline \(4{ }^{4} \mathrm{O} 919\) \& 30
17 \& 27
16 \& 10018 \& 204 \& , 93 \& \({ }_{16}^{16} 16 \frac{9}{10}\) \& \(\stackrel{86}{26}\) \& \({ }^{88}\) \& \({ }_{260}^{260} 0 \frac{10}{11}{ }^{61}\) \& 51 \& \(91 \frac{1}{2}\) \& 47 \& 55 \& \& \& \\
\hline \(40 \frac{2}{2}\) \& 50 \& 47 \& \(100 \frac{1}{2}\) \& 104 \& 85 \& \(160 \frac{11}{11}\) \& 27 \& 18 \& \(260 \frac{13}{13}\) \& 37 \& \({ }^{9} 11 \frac{3}{5}\) \& 33
38
38 \& \begin{tabular}{l}
33 \\
35 \\
\hline
\end{tabular} \& \& \& \\
\hline 4.3 \& 27 \& 35 \& \(100 \frac{4}{4}\) \& 19 \& 21 \& \(160 \frac{}{16}\) \& 28 \& 20 \& \(260 \frac{14}{14} 35\) \& 33 \& 918 \& 61 \& 42 \& \& \& \\
\hline \(40 \frac{1}{7}\) \& 57 \& 62 \& 1005 \& 73 \& 23
67 \& \(160 \frac{3}{14}\) \& 4 \& 38 \& \(260 \frac{15}{17} 36\) \& 34
44 \& \({ }^{9} 11{ }^{21}\) \& 165 \& 168 \& \& \& \\
\hline 408 \& 95 \& 79 \& \(100 \frac{7}{7}\) \& 28 \& 13 \& 160 \& 43 \& 54 \& 26078 \& 26 \& \(111 \frac{3}{2}\) \& 94 \& \({ }_{78}\) \& \& \& \\
\hline 40 \& 23 \& 4 \& 1009 \& 21 \& 25
26 \& 160 \& 35 \& 37 \& \({ }_{26}^{26}{ }^{26}{ }^{29} 1936\) \& 29 \& \({ }^{11} 11 \frac{1}{17}\) \& \({ }^{227}\) \& 263 \& \& \& \\
\hline \(40 \frac{12}{12}\) \& 120 \& 103 \& 100 \& 87 \& 76 \& 160 \& 50 \& 45 \& \(260 \frac{22}{22} 5\) \& 56 \& 131 \& 100 \& 105 \& \& \& \\
\hline \({ }_{4}^{4} 0\) \& \({ }^{164}\) \& \({ }_{31}^{161}\) \& \& \& \& \({ }^{16} 5\) \& 157 \& \({ }^{63}\) \& \({ }_{26}^{26} 0\) \& \(\begin{array}{r}46 \\ 5 \\ \hline\end{array}\) \& \(131 \frac{12}{12}\) \& 62 \& 72 \& \& \& \\
\hline \(40 \frac{18}{18}\) \& 50 \& 49 \& 100 \& 189 \& 208 \& 1609 \& 75 \& 79 \& 2605 \& 75 \& \(13, \frac{13}{14}\) \& 115 \& \({ }_{131}^{201}\) \& \& \& \\
\hline 602
606 \& 32
3
35 \& 24 22 \& \& 135 \& \(\begin{array}{r}152 \\ 12 \\ \hline\end{array}\) \& \({ }^{18} 801\) \& 34 \& 28 \& \({ }_{26}^{26} 0{ }^{26}\) 27 \({ }^{87}\) \& 100 \& 1516 \& 78 \& 78 \& \& \& \\
\hline 6010 \& 31 \& 25 \& 100 \& 36 \& 22
27 \& 1803 \& 50 \& 64 \& 280283 \& \({ }^{154}\) \& 15:900 \& \& 63 \& \& \& \\
\hline 6011 \& 196 \& 222 \& \(100 \frac{21}{21}\) \& 36 \& 47 \& 1806 \& 35 \& 27 \& \(280 \frac{3}{3} 155\) \& 153 \& 15111 \& 48 \& 49 \& \& \& \\
\hline 6012
601 \& \& 288 \& 100
1201
120 \& \({ }_{2}^{29}\) \& \({ }_{3}^{53}\) \& 1807
1808

1808 \& \& 35
40 \& ${ }_{28}^{28} 0 \frac{4}{4} \frac{34}{43}$ \& 32 \& 1515 \& 48 \& 71 \& \& \&

\hline $60 \frac{2}{2}$ \& 25 \& 25 \& 1202 \& 210 \& 210 \& 188 \& 47 \& \& $28.80{ }^{28}$ \& 36
58 \& loll \& 137
227 \& \& \& \&

\hline 603 \& 47 \& 41 \& 1203 \& 153 \& 153 \& 18012 \& 61 \& 59 \& $280 \overline{18} 61$ \& 50 \& $151 \frac{11}{11}$ \& 44 \& 60 \& \& \&

\hline
\end{tabular}

Table 8. Interatomic distances for the octahedral atoms B in $\mathrm{W}_{5} \mathrm{Nb}_{16} \mathrm{O}_{55}$

						Distances (\AA)					O-O distances (\AA)			
Metal	Bonded oxygen atoms*					(Same order as in column 2)					Average	Max.	Min.	Average
$B(1)$	2^{\prime} (2);	26,	28,	6,	3	2.02(2);	2.04,	2.11,	2.03,	$1 \cdot 85$	$2 \cdot 01$	$3 \cdot 26$	$2 \cdot 37$	$2 \cdot 81$
$B(2)$	$27^{\prime}(2)$;	27,	3 ,	8 ,	5	2.01(2);	2.17,	2.02,	1.81,	1.95	1.99	$3 \cdot 07$	$2 \cdot 48$	$2 \cdot 80$
$B(3)$	$26^{\prime}(2)$;	2,	5,	10,	7	2.04(2);	2.12,	1.91,	1.92,	1.92	1.99	$3 \cdot 26$	$2 \cdot 37$	2.79
$B(4)$	$25^{\prime}(2)$;	4,	7,	12,	9	2.07(2);	2.04,	1.98,	1.97,	$1 \cdot 94$	$2 \cdot 01$	$3 \cdot 36$	$2 \cdot 22$	$2 \cdot 83$
$B(5)$	$24^{\prime}(2)$;	8,	11,	15,	13	1.91(2);	2.09,	2.00,	1-83,	1.92	1.94	$2 \cdot 92$	$2 \cdot 63$	2.75
$B(6)$	22'(2);	10,	13,	17,	14	1-91(2);	1.98,	1.89,	1.93,	1.99	1.93	$2 \cdot 85$	$2 \cdot 69$	2.74
$B(7)$	$21^{\prime}(2)$;	12,	14,	19,	16	2.08(2);	1.93,	1-91,	$1 \cdot 84$,	$2 \cdot 07$	1.98	$3 \cdot 33$	$2 \cdot 28$	$2 \cdot 77$
$B(8)$	$18^{\prime}(2)$;	15,	20,	17,	1	1.91(2);	1.99,	1.99,	1.89 ,	1.89	1.93	$2 \cdot 89$	$2 \cdot 55$	$2 \cdot 73$
$B(9)$	$16^{\prime}(2)$;	12,	21,	19,	20	2.04(2);	1.88,	1-95,	2.03,	1.92	1.97	3.24	$2 \cdot 28$	2.79
$B(10)$	$9^{\prime}(2)$;	6,	25,	23,	11	2.09(2);	1.89,	1-98,	1.98,	1.88	1.98	$3 \cdot 32$	$2 \cdot 22$	2.76

* Given by numbers only (Table 6, Fig. 4). The first, followed by (2) and a semicolon, are the two oxygen atoms lying over and under the metal B. E.s.d's of metal-oxygen distances are $\pm 0.07 \AA$, for oxygen-oxygen $0.09 \AA$.
average estimated standard deviations, and would refine no further within the limits we have outlined. The alternative model was therefore not considered.

The $h 1 l$ data again favoured a polar structure, R for the space group $C 2$ with W ordered in $2(a),(0, y, 0)$ with $y=\frac{1}{4}$ being 16.4%, while for $C 2 / m$ with W statistically situated in $4(g), \pm(0, y, 0)$ with $y=\frac{1}{4}$ it was $18 \cdot 3 \%$. Atomic parameters are given in Table 6, a comparison of F_{o} and F_{c} in Table 7, and bond distances in Tables 8 and 9 , while the structure is illustrated by Fig. 4.

Table 9. Tetrahedral interatomic distances and angles for $\mathrm{W}_{5} \mathrm{Nb}_{16} \mathrm{O}_{55}$

W-O(4)	$1.76 \pm 0.07 \AA$
W-O(28)	1.85 ± 0.07
$\mathrm{O}(4)-\mathrm{O}\left(4^{\prime}\right)$	$2 \cdot 95 \pm 0.14$
$\mathrm{O}(28)-\mathrm{O}\left(28^{\prime}\right)$	$3 \cdot 17 \pm 0 \cdot 14$
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{O}(28)$	3.04 ± 0.09
$\mathrm{O}(4)-\mathrm{O}(28)$	2.72 ± 0.09
$\mathrm{O}(4)-\mathrm{W}-\mathrm{O}\left(28^{\prime}\right)$	$96.8{ }^{\circ}$
$\mathrm{O}(4)-\mathrm{W}-\mathrm{O}(28)$	113.7
$\mathrm{O}(4)-\mathrm{W}-\mathrm{O}\left(4^{\prime}\right)$	112.9
$\mathrm{O}(28)-\mathrm{W}-\mathrm{O}\left(28^{\prime}\right)$	116.9

Discussion

We wish to stress the dual purpose of these structure analyses, firstly to confirm the building principles which are discussed with their implications in part IV of this series (Roth \& Wadsley, 1965d), and secondly to derive

Fig. 4. Atom positions in $\mathrm{W}_{5} \mathrm{Nb}_{16} \mathrm{O}_{55}$, small circles octahedral metals $\frac{1}{5}(4 \mathrm{Nb}+\mathrm{W})$, larger circles oxygen. The lighter ones are at $y=0$, the heavier at $y=\frac{1}{2}$. The tetrahedral W is hatched.
the real positions of the atoms as well as the distribution of the metals.

In the ideal cases there are two distances between the octahedral metals. Within a block where corners are shared, they are separated by $3.8 \AA$, but when they are joined by edges to other blocks they are only $2 \cdot 7 \AA$ apart. Short distances of this order are possible only if there are metal-to-metal bonds, but are unlikely with Nb and W in their normal valency states. Departures from the ideal structure undoubtedly originate from the repulsion of these atoms, the $2 \cdot 7 \AA$ distance being increased to about $3.4 \AA$ where there is then little likelihood of overlap between the orbitals of the adjacent metals. Within a block and between blocks, where there is a shear, the metals themselves form a remarkably regular group showing little or no departure from orthogonality, their linear extension being terminated only by the tetrahedral metals which are completely out of alignment.

In $\mathrm{WNb}_{12} \mathrm{O}_{33}$ the octahedron associated with $\mathrm{Nb}(4)$ is at the centre of the block, and is more nearly regular than the remainder. As each pair of metals at the edges are pushed apart, the two oxygens common to them are pulled together, resulting in normal metal-oxygen bonds but very short $\mathrm{O}(12)-\mathrm{O}\left(12^{\prime}\right), \mathrm{O}(7)-\mathrm{O}\left(15^{\prime}\right)$ and $\mathrm{O}(2)-\mathrm{O}\left(16^{\prime}\right)$ distances of $2 \cdot 18,2 \cdot 15$ and $2 \cdot 19$, all $\pm 0.09 \AA$. The elongation of the peaks corresponding to these atoms in the $F_{0}-F_{\text {metal }}$ synthesis (Fig. 1) could have arisen from the presence of half an oxygen atom at each end, either statistical or ordered in the alternative space group Cm , just as much as through a grossly anisotropic temperature factor. This would give on an average rather more acceptable distances between these atoms, but was not confirmed by structure factor calculations.

In $\mathrm{W}_{5} \mathrm{Nb}_{16} \mathrm{O}_{55} B(5), B(6)$ and $B(8)$ are inside the blocks, and their octahedra are more nearly regular than the remainder (Fig. 4). The distances $\mathrm{O}(16)-$ $\mathrm{O}\left(21^{\prime}\right), \mathrm{O}(9)-\mathrm{O}\left(25^{\prime}\right), \mathrm{O}(2)-\mathrm{O}\left(26^{\prime}\right)$ and $\mathrm{O}(27)-\mathrm{O}\left(27^{\prime}\right)$ are $2 \cdot 28,2 \cdot 22,2.37$ and $2.48 \pm 0.09 \AA$ respectively. Correspondingly short distances are not altogether rare in solid state compounds containing metal ions of Groups IV, V and VI, and have been discussed elsewhere (Gatehouse \& Wadsley, 1964).

The tetrahedron in $\mathrm{WNb}_{12} \mathrm{O}_{33}$ is very nearly regular with four $\mathrm{W}-\mathrm{O}$ bonds $1.70 \pm 0.07 \AA$, while in $\mathrm{W}_{5} \mathrm{Nb}_{16} \mathrm{O}_{55}$ there are two $\mathrm{W}-\mathrm{O}$ bonds $1.76 \AA$ as well as two of $1.85 \pm 0.07 \AA$. They may be compared with values of $1.79 \AA$ in CaWO_{4} (Kay, Frazer \& Almodovar, 1964) and 1.74 and $1.78 \AA$ in $\mathrm{Eu}_{2}\left(\mathrm{WO}_{4}\right)_{3}$ (Templeton \& Zalkin, 1963) where the isolated tungsten-oxygen tetrahedra are joined only through the Ca or Eu ions.

There is no evidence that either compound forms a defect structure with excess oxygen or with vacated metal positions, and any range of composition despite the evidence for $\mathrm{WNb}_{12} \mathrm{O}_{33}$ in part I , can be expected to be extremely small.

References

Cruickshank, D. W. J., Lynton, H. \& Barclay, G. A. (1962). Acta Cryst. 15, 491.

Gatehouse, B. M. \& Wadsley, A. D. (1964). Acta Cryst. 17, 1545.
International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
Kay, M. I., Frazer, B. C. \& Almodovar, I. (1964). J. Chem. Phys. 40, 504.
Roth, R. S. \& Wadsley, A. D. (1965a). Acta Cryst. 18, 724. Roth, R. S. \& Wadsley, A. D. (1965b). Acta Cryst. 19, 26. Roth, R. S. \& Wadsley, A. D. (1965c). Acta Cryst. 19, 38. Roth, R. S. \& Wadsley, A. D. (1965d). Acta Cryst. 19, 42.
Roth, R. S., Wadsley, A. D. \& Andersson, S. (1965). Acta Cryst. 18, 643.
Suzuki, J. (1960). Acta Cryst. 13, 279.
Templeton, D. H. \& Zalkin, A. (1963). Acta Cryst. 16, 762,
Thomas, L. J. \& Umeda, K. (1957). J. Chem. Phys. 26. 293.

Wadsley, A. D. (1961a). Acta Cryst. 14, 660.
Wadsley, A. D. (1961b). Acta Cryst. 14, 664.

Multiple Phase Formation in the Binary System $\mathbf{N b}_{2} \mathrm{O}_{5}-\mathbf{W O}_{3}$ III. The Structures of the Tetragonal Phases $\mathbf{W}_{\mathbf{3}} \mathbf{N b}_{14} \mathbf{O}_{44}$ and $\mathbf{W}_{\mathbf{8}} \mathbf{N b}_{18} \mathbf{O}_{69}$

By R.S.Roth* and A.D.Wadsley
Division of Mineral Chemistry, C.S.I.R.O., Melbourne, Australia

(Received 26 October 1964)

Abstract

The unit-cell dimensions of $\mathrm{W}_{3} \mathrm{Nb}_{14} \mathrm{O}_{44}$ are $a=21 \cdot 02, c=3 \cdot 824 \AA$, space group $I 4 / m$ or $I 4$. The structure consists of ReO_{3}-type blocks of octahedra four wide, four long, and infinite along the fourfold axis, joined by sharing edges and with tetrahedral W atoms at the junctions of every four blocks. $\mathrm{W}_{8} \mathrm{Nb}_{18} \mathrm{O}_{69}$, with the dimensions $a=26 \cdot 25, c=3 \cdot 813 \AA$, most probable space group 14 , has an identical structure except that the blocks are five octahedra in width and length. W and Nb are randomized in the octahedral positions of both phases. The structures were deduced by trial-and-error and refined by twodimensional Fourier methods.

Introduction

The crystal structure analyses of the two tetragonal compounds $\mathrm{W}_{3} \mathrm{~N} \mathrm{~b}_{14} \mathrm{O}_{44}$ and $\mathrm{W}_{8} \mathrm{Nb}_{18} \mathrm{O}_{69}$ posed problems of a special kind. In the first place the crystals were extremely small and fragile, and consequently difficult to handle. Since the specimens provided powder diffraction patterns of good quality, we had hoped to use intensities from the diffractometer to confirm the proposed structures, even although the asymmetric unit of each one contained a considerable number of atoms. The powder data, however, could not be used analytically, as the ideal structures of both compounds, although readily proposed, belonged to a symmetry group where overlapping reflexions of the same class were not equivalent. 'One shot' attempts to move the atoms to their real positions showed a general agree-

* Permanent address: National Bureau of Standards, Washington D.C., U.S.A.
ment between observed and calculated intensities, but were not good enough to resolve all of the ambiguities outlined in the introduction to part II of the present series of papers (Roth \& Wadsley, 1965).
In the second place the crystals, when eventually mounted, were so small and the sub-cell development so marked, that the number of reflexions in both cases was extremely small. The structure analyses, using the methods outlined in the preceding paper, are therefore not particularly accurate.

The structure of $\mathbf{W}_{3} \mathbf{N b}_{14} \mathbf{O}_{44}$

A minute needle 0.05 mm long and less than two microns in cross-section was picked from a specimen that had been heated to $1425^{\circ} \mathrm{C}$ for four hours in a sealed platinum capsule and then quenched. The unit-cell dimensions are given in Table 1 with the remainder of the crystallographic constants. The systematically missing reflexions were characteristic of a body-centred

[^0]: * Permanent address: National Bureau of Standards, Washington D.C., U.S.A.

